Publications

Birgitte Regenberg

Birgitte Regenberg (0000-0003-4996-7012) (orcid.org)
‪Birgitte Regenberg‬ - ‪Google Scholar‬

2024

Microfluidic isolation of extrachromosomal circular DNA through selective digestion of plasmids and linear DNA using immobilized nucleases
Zole E, Sathyanarayanan G, Regenberg B, Kutter JP.
Lab Chip. 2024 May 16. doi: 10.1039/d3lc01028g.

Generative Modelling of Oncogene-carrying Extrachromosomal Circular DNA Biogenesis and Dynamics in Cells
Janos Hasko, Weijia Feng, Aram Arshadi, Doron Tolomeo, Chuang Sun Hembo, Trine Skov Petersen, Wei Lv, Peng Han, Yuchen Zeng, Fei Wang, Lars Bolund, Lin Lin, Birgitte Regenberg, Clelia Tiziana Storlazzi, Yonglun Luo
bioRxiv

Extrachromosomal Circular DNA: An Emerging Potential Biomarker for Inflammatory Bowel Diseases?
Petito V, Di Vincenzo F, Putignani L, Abreu MT, Regenberg B, Gasbarrini A, Scaldaferri F.
Genes (Basel). 2024 Mar 26;15(4):414. doi: 10.3390/genes15040414.

Technical and biological variations in the purification of extrachromosomal circular DNA (eccDNA) and the finding of more eccDNA in the plasma of lung adenocarcinoma patients compared with healthy donors
Egija Zole, Lasse B Hansen, Janos Hasko, Daniela Gerovska, Marcos J Arauzo-Bravo, Julie Boertmann Noer, Yonglun Luo, Jakob Sidenius Johansen, Birgitte Regenberg
bioRxiv

Atlas of eccDNA in Mus musculus reveals intron and isoform gene-density dependent protection of transcription-induced eccDNA formation
Birgitte Regenberg, Gerard Tané, Xue Liang, Yating Qin, Lucía González, Maria TümmlerJie Ma, Sylvester Holt, Peng Han, Yonglun Luo, Aurora Ruiz-Herrera, Henriette Pilegaard
Research Square

P096 Human extrachromosomal circular DNA is an emerging biomarker in Inflammatory Bowel Disease
V Petito, F DI VINCENZO, D Gerovska, A Piazzesi, A Russo, L Turchini, L Masi, L R Lopetuso, M T Abreu, B Regenberg, A Gasbarrini, L Putignani, M J Bravo Araúzo, F Scaldaferri
Journal of Crohn's and Colitis, https://doi.org/10.1093/ecco-jcc/jjad212.0226

2023

eccDNA Atlas Reveals Features that Protect Genes from Transcription-Induced eccDNA Formation
Arrey G., Liang X., Qin Y., Álvarez-González L., Tümmler M. C., Ma J., Holt S., Han P., Luo Y., Li H., Ruiz-Herrera A., Pilegaard H., Regenberg B.
Molecular Cell, 2023 Nov 16; Preprint.

Methods for the purification and detection of single nucleotide KRAS mutations on extrachromosomal circular DNA in human plasma
Hansen L. B., Jakobsen S. F., Zole E., Noer J. B., Fang L. T., Alizadeh S., Johansen J. S., Mohiyuddin M., Regenberg B. Cancer Medicine 12, Aug 21;17679-17691, doi: 10.1002/cam4.6385

Variation of extrachromosomal circular DNA in cancer cell lines
Dos Santos CR, Hansen LB, Rojas-Triana M, Johansen AZ, Perez-Moreno M, Regenberg B.
Comput Struct Biotechnol J. 2023 Aug 28;21:4207-4214. doi: 10.1016/j.csbj.2023.08.027

Circular and Circulating DNA in Inflammatory Bowel Disease: From Pathogenesis to Potential Molecular Therapies
Di Vincenzo F, Yadid Y, Petito V, Emoli V, Masi L, Gerovska D, Araúzo-Bravo MJ, Gasbarrini A, Regenberg B, Scaldaferri F.
Cells, 2023 Jul 27;12(15):1953. doi: 10.3390/cells12151953

Did circular DNA shape the evolution of mammalian genomes?
Holt S, Arrey G, Regenberg B.
Trends Biochem Sci. 2023 Apr;48(4):317-320. doi: 10.1016/j.tibs.2022.09.010

2022

CReSIL: accurate identification of extrachromosomal circular DNA from long-read sequences
Wanchai V, Jenjaroenpun P, Leangapichart T, Arrey G, Burnham CM, Tümmler MC, Delgado-Calle J, Regenberg B, Nookaew I.
Brief Bioinform, 2022 Nov 19. doi: 10.1093/bib/bbac422

Review
Extrachromosomal circular DNA in cancer: history, current knowledge, and methods
Julie B. Noer, Oskar K. Hørsdal, Xi Xiang, Yonglun Luo, Birgitte Regenberg
Trends in Genetics, 2022 Jul;38(7):766-781. doi: 10.1016/j.tig.2022.02.007

Targeted removal of mitochondrial DNA from mouse and human extrachromosomal circular DNA with CRISPR-Cas9
Weijia Feng, Gerard Arrey, Egija Zole, Xue Liang, Peng Han, Marghoob Mohiyuddin, Henriette Pilegaard, Birgitte Regenberg.
Comput Struct Biotechnol J., 2022 Jun 15. doi: 10.1016/j.csbj.2022.06.028

CIRCLE-SEQ REVEALS GENOMIC AND DISEASE-SPECIFIC HALLMARKS IN URINARY CELL-FREE EXTRACHROMOSOMAL CIRCULAR DNAS.
WEI LV1,2 XIAOGUANG, PAN, PENG HAN, ZIYU WANG, WEIJIA FENG, XUE XING, QINGQING WANG, KUNLI QU, YUCHEN ZENG, CAILIN ZHANG, ZHE XU, YI LI, TIANYU ZHENG, LING LIN, CHENGXUN LIU1, XUEMEI LIU, HANBO LI, RASMUS AMUND HENRIKSEN, LARS BOLUND, LIN LIN, XIN JIN10 , HUANMING YANG, XIUQING ZHANG, TAILANG YIN, BIRGITTE REGENBERG, FAN HE , YONGLUN LUO
Clinical and Translational Medicine, 2022, Mar 29, doi: 10.1002/CTM2.817

A unifying model for extrachromosomal circular DNA load in eukaryotic cells
Gerard Arrey, Samuel T. Keating, Birgitte Regenberg
Seminars in Cell and Developmental Biology, 2022,  Mar 12, doi: 10.1016/j.semcdb.2022.03.002

Circular DNA in the human germline and its association with recombination
Henriksen RA, Jenjaroenpun P, Sjøstrøm IB, Jensen KR, Prada-Luengo I, Wongsurawat T, Nookaew I, Regenberg B.
Molecular Cell, 2022, Jan 6. doi: 10.1016/j.molcel.2021.11.027

2021

Isolation, characterization, and genome assembly of Barnettozyma botsteinii sp. nov. and novel strains of Kurtzmaniella quercitrusa isolated from the intestinal tract of the …
Arrey G, Li G, Murphy R, Guimaraes L, Alizadeh S, Poulsen M, Regenberg B.
G3 (Bethesda). 2021 Dec 8;11(12):jkab342. doi: 10.1093/g3journal/jkab342

2020

Replicative aging is associated with loss of genetic heterogeneity from extrachromosomal circular DNA in Saccharomyces cerevisiae
Iñigo Prada-Luengo, Henrik D Møller, Rasmus A Henriksen, Qian Gao, Camilla Eggert Larsen, Sefa Alizadeh, Lasse Maretty, Jonathan Houseley, Birgitte Regenberg
Nucleic Acids Research, Volume 48, Issue 14, 20 August 2020, Pages 7883–7898, https://doi.org/10.1093/nar/gkaa545

What Is Extrachromosomal Circular DNA and What Does It Do?
Rossa W K Chiu, Anindya Dutta, Anton G Henssen, Y M Dennis Lo, Paul Mischel, Birgitte Regenberg
Clinical Chemistry, Volume 66, Issue 6, June 2020, Pages 754–759, https://doi.org/10.1093/clinchem/hvaa096

Near-Random Distribution of Chromosome-Derived Circular DNA in the Condensed Genome of Pigeons and the Larger, More Repeat-Rich Human Genome
Møller HD, Ramos-Madrigal J, Prada-Luengo I, Gilbert MTP, Regenberg B.
Genome Biol Evol. 2020 Jan 1;12(1):3762-3777. doi: 10.1093/gbe/evz281

2019

Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties and oxidative stress resistance in aged human skeletal muscle
Sailani MR, Halling JF, Møller HD, Lee H, Plomgaard P, Pilegaard H, Snyder MP, Regenberg B (2019)
Scientific Reports. 9(1):3272.

Multicellular group formation in Saccharomyces cerevisiae
Fisher RM, Regenberg B (2019)
Proceedings. Biological Sciences. 286(1910):20191098

RNAi as a Tool to Study Virulence in the Pathogenic Yeast Candida glabrata
Ishchuku OP, Ahmad KM, Koruza K, Bojanovic K, Sprenger M, Kasper L, Brunke S, Hube B, Säll T, Hellmark T, Gullstrand B, Brion C, Freel K, Schacherer J, Regenberg B, Knechtts W, Piskur J (2019)
Frontiers in Microbiology. 10:1679

Sensitive detection of circular DNAs at single-nucleotide resolution using guided realignment of partially aligned reads
Prada-Luengo I, Krogh A, Maretty L, Regenberg B (2019)
BMC Bioinformatics. 20(1):663

To Be or Not to Be: Circular RNAs or mRNAs From Circular DNAs?
Iparraguirre L, Prada-Luengo I, Regenberg B, Otaegui D (2019)
Frontiers in Genetics. 10:940

2018

CRISPR-C: circularization of genes and chromosome by CRISPR in human cells
Møller HD, Lin L, Xiang X, Petersen TS, Huang J, Yang L, Kjeldsen E, Jensen UB, Zhang X, Liu X, Xu X, Wang J, Yang H, Church GM, Bolund L, Regenberg B, Luo Y (2018)
Nucleic Acids Research. 46(22):e131.

Circular DNA elements of chromosomal origin are common in healthy human somatic tissue
Møller HD, Mohiyuddin M, Prada-Luengo I, Sailani MR, Halling JF, Plomgaard P, Maretty L, Hansen AJ, Snyder MP, Pilegaard H, Lam HYK, Regenberg B (2018)
Nature Communications. 9(1):1069.

Regulation of apoptosis and autophagy in mouse and human skeletal muscle with aging and lifelong exercise training
Dethlefsen MM, Halling JF, Møller HD, Plomgaard P, Regenberg B, Ringholm S, Pilegaard H (2018)
Experimental Gerontology. 111:141-153.

2017

Division of labour in the yeast: Saccharomyces cerevisiae
Dominika M. Wloch-SalamonRoberta M. FisherBirgitte Regenberg (2017)
Yeast. 34(10):399-406.

Persistence and drug tolerance in pathogenic yeast
Bojsen R, Regenberg B, Folkesson A.
Curr Genet. 2017 Feb;63(1):19-22. doi: 10.1007/s00294-016-0613-3. Epub 2016 May 19.

2016

Formation of Extrachromosomal Circular DNA from Long Terminal Repeats of Retrotransposons in Saccharomyces cerevisiae
Møller HD, Larsen CE, Parsons L, Hansen AJ, Regenberg B, Mourier T.
G3 (Bethesda).
2015 Dec 17;6(2):453-62. doi: 10.1534/g3.115.025858

Clonal yeast biofilms can reap competitive advantages through cell differentiation without being obligatorily multicellular
Regenberg B, Hanghøj KE, Andersen KS, Boomsma JJ.
Proc Biol Sci. 2016 Nov 16;283(1842):20161303. doi: 10.1098/rspb.2016.1303

Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells
Møller HD, Bojsen RK, Tachibana C, Parsons L, Botstein D, Regenberg B.
J Vis Exp. 2016 Apr 4;(110):e54239 |. doi: 10.3791/54239

A common mechanism involving the TORC1 pathway can lead to amphotericin B-persistence in biofilm and planktonic Saccharomyces cerevisiae populations
Rasmus Bojsen, Birgitte Regenberg, David Gresham & Anders Folkesson (2016)
Sci Rep. 2016 Feb 23;6:21874. doi: 10.1038/srep21874

2015

Extrachromosomal circular DNA is common in yeast
Møller HD, Parsons L, Jørgensen TS, Botstein D, Regenberg B.
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):E3114-22. doi: 10.1073/pnas.1508825112

Antifungal properties of peptidomimetics with an arginine-[β-(2,5,7-tri-tert-butylindol-3-yl)alanine]-arginine motif against Saccharomyces cerevisiae and Zygosaccharomyces bailii
Larsen CE, Larsen CJ, Franzyk H, Regenberg B.
FEMS Yeast Res. 2015 May;15(3):fov011. doi: 10.1093/femsyr/fov011

2014

Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase
Bojsen R, Regenberg B, Folkesson A.
BMC Microbiol. 2014 Dec 4;14:305. doi: 10.1186/s12866-014-0305-4

Genetic basis for Saccharomyces cerevisiae biofilm in liquid medium
Scherz K, Andersen, Bojsen R, Gro L, Rejkjær, Sørensen, Weiss M, Nielsen, Lisby M, Folkesson A, Regenberg B.
G3 (Bethesda). 2014 Jul 9;4(9):1671-80. doi: 10.1534/g3.114.010892

2013

The synthetic amphipathic peptidomimetic LTX109 is a potent fungicide that disturbs plasma membrane integrity in a sphingolipid dependent manner
Bojsen R, Torbensen R, Larsen CE, Folkesson A, Regenberg B.
PLoS One. 2013 Jul 12;8(7):e69483. doi: 10.1371/journal.pone.0069483

A model for generating several adaptive phenotypes from a single genetic event: Saccharomyces cerevisiae GAP1 as a potential bet-hedging switch
Møller HD, Andersen KS, Regenberg B.
Commun Integr Biol. 2013 May 1;6(3):e23933. doi: 10.4161/cib.23933

2012

Amino acid transporter genes are essential for FLO11-dependent and FLO11-independent biofilm formation and invasive growth in Saccharomyces cerevisiae
Torbensen R, Møller HD, Gresham D, Alizadeh S, Ochmann D, Boles E, Regenberg B.
PLoS One. 2012;7(7):e41272. doi: 10.1371/journal.pone.0041272

Saccharomyces cerevisiae--a model to uncover molecular mechanisms for yeast biofilm biology
Bojsen RK, Andersen KS, Regenberg B.
FEMS Immunol Med Microbiol. 2012 Jul;65(2):169-82. doi: 10.1111/j.1574-695X.2012.00943.x

2011

Advanced microscopy of microbial cells
Haagensen JA, Regenberg B, Sternberg C.
Adv Biochem Eng Biotechnol. 2011;124:21-54. doi: 10.1007/10_2010_83

Pseudomonas aeruginosa and Saccharomyces cerevisiae biofilm in flow cells
Weiss Nielsen M, Sternberg C, Molin S, Regenberg B.
J Vis Exp. 2011 Jan 15;(47):2383. doi: 10.3791/2383

2010

Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus
Gresham D, Usaite R, Germann SM, Lisby M, Botstein D, Regenberg B.
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18551-6. doi: 10.1073/pnas.1014023107

2008

The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae
de Jongh WA, Bro C, Ostergaard S, Regenberg B, Olsson L, Nielsen J.
Biotechnol Bioeng. 2008 Oct 1;101(2):317-26. doi: 10.1002/bit.21890

2007

N-limitation leads to evolution of invasive growth in yeast via amino-acid premeses, the MAP-kinase and the PKA pathways
R Usaite, T Grotkjaer, B Regenberg
FEBS journal, 2007 July 1;274:193-193.

2006

Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae
Regenberg B, Grotkjaer T, Winther O, Fausbøll A, Akesson M, Bro C, Hansen LK, Brunak S, Nielsen J.
Genome Biol. 2006;7(11):R107. doi: 10.1186/gb-2006-7-11-r107

Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, L-alanine, or L-glutamine limitation
Usaite R, Patil KR, Grotkjaer T, Nielsen J, Regenberg B.
Appl Environ Microbiol. 2006 Sep;72(9):6194-203. doi: 10.1128/AEM.00548-06

In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
Bro C, Regenberg B, Förster J, Nielsen J.
Metab Eng. 2006 Mar;8(2):102-11. doi: 10.1016/j.ymben.2005.09.007

Deletion of RTS1, encoding a regulatory subunit of protein phosphatase 2A, results in constitutive amino acid signaling via increased Stp1p processing
Eckert-Boulet N, Larsson K, Wu B, Poulsen P, Regenberg B, Nielsen J, Kielland-Brandt MC.
Eukaryot Cell. 2006 Jan;5(1):174-9. doi: 10.1128/EC.5.1.174-179.2006

Robust multi-scale clustering of large DNA microarray datasets with the consensus algorithm
Grotkjaer T, Winther O, Regenberg B, Nielsen J, Hansen LK.
Bioinformatics. 2006 Jan 1;22(1):58-67. doi: 10.1093/bioinformatics/bti746

2005

Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering
Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J.
Appl Environ Microbiol. 2005 Nov;71(11):6465-72. doi: 10.1128/AEM.71.11.6465-6472.2005

Grr1p is required for transcriptional induction of amino acid permease genes and proper transcriptional regulation of genes in carbon metabolism of Saccharomyces cerevisiae
Eckert-Boulet N, Regenberg B, Nielsen J.
Curr Genet. 2005 Mar;47(3):139-49. doi: 10.1007/s00294-004-0553-1

2004

Transcriptional profiling of extracellular amino acid sensing in Saccharomyces cerevisiae and the role of Stp1p and Stp2p
Eckert-Boulet N, Nielsen PS, Friis C, dos Santos MM, Nielsen J, Kielland-Brandt MC, Regenberg B.
Yeast. 2004 Jun;21(8):635-48. doi: 10.1002/yea.1120

Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism
Bro C, Regenberg B, Nielsen J.
Biotechnol Bioeng. 2004 Feb 5;85(3):269-76. doi: 10.1002/bit.10899

Use of laminar flow patterning for miniaturised biochemical assays
Regenberg B, Krühne U, Beyer M, Pedersen LH, Simon M, Thomas OR, Nielsen J, Ahl T.
Lab Chip. 2004 Dec;4(6):654-7. doi: 10.1039/b409141h

2003

Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells
Bro C, Regenberg B, Lagniel G, Labarre J, Montero-Lomelí M, Nielsen J.
J Biol Chem. 2003 Aug 22;278(34):32141-9. doi: 10.1074/jbc.M304478200

Yeast functional genomics and metabolic engineering: past, present and future
Bro C, Regenberg B, Nielsen J.
Functional Genetics of Industrial Yeasts, 2003, Jan 1;331-360.

Dynamics of the components in the amino acid sensing pathway of Saccharomyces cerevisiae
Eckert-Boulet N, Regenberg B, Stensballe A, Jensen O N, Nielsen J
Yeast. 2003;(20):165-165.

Adaptive evolution of Saccharomyces cerevisiae under nitrogen-limited conditions
Usaite R, Regenberg B, Åkesson M F, Nielsen J
Yeast. 2003;(20):263-263.

Roles of Sth1 in the RSC complex as shown by a novel algorithm for optimised clustering of large gene expression data sets
Regenberg B, Grotkjær T, Winther O, Hansen L K, Holmberg S, Nielsen J
Yeast. 2003;(20):339-339.

Metabolic engineering in Saccharomyces cerevisiae through the use of a reconstructed genome-scale metabolic network leads to improved ethanol production
Bro C, Regenberg B, Förster J, Nielsen J
Yeast. 2003;(20):284-284.

2002

Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae
Piper MD, Daran-Lapujade P, Bro C, Regenberg B, Knudsen S, Nielsen J, Pronk JT.
J Biol Chem. 2002 Oct 4;277(40):37001-8. doi: 10.1074/jbc.M204490200

GENOMICS, PROTEOMICS, AND BIOINFORMATICS-Reproducibility of Oligonucleotide Microarray Transcriptome Analyses. AN INTERLABORATORY COMPARISON USING CHEMOSTAT CULTURES OF SACCHAROMYCES CEREVISIAE
Piper M D W, Daran-Lapujade P, Bro C, Regenberg B, Knudsen S, Nielsen J, Pronk J T
J Biol Chem.
2002 Oct 4;277(40):37001-37008.

2001

Amino acid residues important for substrate specificity of the amino acid permeases Can1p and Gnp1p in Saccharomyces cerevisiae
Regenberg B, Kielland-Brandt MC
Yeast. 2001 Nov;18(15):1429-40. doi: 10.1002/yea.792

Transcriptional response of Saccharomyces cerevisiae strains engineered in the regulatory network of the galactose metabolism
Bro C, Regenberg B, Olsson L, Nielsen J
Yeast. 2001 Aug 1;(18):226-226.

Coupling between amino acid sensing and carbon metabolism via Ssy1, Stp1 and Stp2
Regenberg B, Nielsen P S, Kielland-Brandt M C, Nielsen J
Yeast. 2001 Aug 1;(18):223-223.

Amino acid sensing and uptake
Gaber R F, Andersen H A, Nielsen J, Nielsen P S, Ottow K, Regenberg B, Kielland-Brandt M C
Yeast. 2001 Aug 1;(18):26-26.

2000

GAP1, a novel selection and counter-selection marker for multiple gene disruptions in Saccharomyces cerevisiae
Regenberg B, Hansen J
Yeast. 2000 Sep 15;16(12):1111-9. doi: 10.1002/1097-0061(20000915)16:12<1111::AID-YEA611>3.0.CO;2-3. Erratum in: Yeast 2001 Mar 15;18(4):389.

1999

Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae
Regenberg B, Düring-Olsen L, Kielland-Brandt MC, Holmberg S.
Curr Genet. 1999 Dec;36(6):317-28. doi: 10.1007/s002940050506

Cysteine uptake by Saccharomyces cerevisiae is accomplished by multiple permeases
Düring-Olsen L, Regenberg B, Gjermansen C, Kielland-Brandt MC, Hansen J.
Curr Genet. 1999 Jul;35(6):609-17. doi: 10.1007/s002940050459

Amino acid uptake in Saccharomyces cerevisiae, substrate specificity and regulation of the permeases
Regenberg B
Royal Veterinary and Agricultural University

1998

Dip5p mediates high-affinity and high-capacity transport of L-glutamate and L-aspartate in Saccharomyces cerevisiae
Regenberg B, Holmberg S, Olsen LD, Kielland-Brandt MC
Curr Genet. 1998 Mar;33(3):171-7. doi: 10.1007/s002940050324

The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae
Didion T, Regenberg B, Jørgensen MU, Kielland-Brandt MC, Andersen HA
Mol Microbiol. 1998 Feb;27(3):643-50. doi: 10.1046/j.1365-2958.1998.00714.x

1996

Plant and fungal plasma membrane H^+-ATPases: how alike are they with respect to regulation?
FC Lanfermeijer, B Regenberg, L Baunsgaard, JM Villalba, MG Palmgren
PROCEEDINGS-PHYTOCHEMICAL SOCIETY OF EUROPE 38 (1), 247-264.

1995

C-terminal deletion analysis of plant plasma membrane H(+)-ATPase: yeast as a model system for solute transport across the plant plasma membrane
Regenberg B, Villalba JM, Lanfermeijer FC, Palmgren MG.
Plant Cell. 1995 Oct;7(10):1655-66. doi: 10.1105/tpc.7.10.1655

1994

3.15: Regulatory mutants of plant membrane H+-ATPase
Baunsgaard L, Regenberg B, Lanfermeijer F, Palmgren M G
Physiologia Plantarum